Fun with strings: Maximal Common Subsequences

What is a Subsequence?

It's a new sequence created by deleting elements from the original sequence and keeping the relative order of the remaining elements

$$
183928413919832424324299-1
$$

What is a Subsequence?

It's a new sequence created by deleting elements from the original sequence and keeping the relative order of the remaining elements

$$
183928413919832424324299
$$

What is a Subsequence?

It's a new string created by deleting characters from the original string and keeping the relative order of the remaining characters
sdfjlvasdjvaiuew

What is a Subsequence?

It's a new string created by deleting characters from the original string and keeping the relative order of the remaining characters
sdfjlvasd vaiue

What is a Subsequence?

What is a Subsequence?

no crossing allowed!

Indeed

' a ' is a subsequence of 'What is a Subsequence?'
'uq' is not a subsequence of 'What is a Subsequence?'

Subsequences are not necessarily contiguous

Substrings are
 contiguous
 dfjlvasd

Subsequences:
S
d va
e

Position doesn't matter in subsequences

Only the relative position of the characters is important

Only the relative position of the characters is important

The actual positions the subsequence maps to don't matter

> ^ called "embeddings" or "mappings"

The subsequence relation is transitive

$W \subset W^{\prime} \subset W^{\prime \prime}$
$\Rightarrow W \subset W^{\prime \prime}$
e.g.: s \subset seqn \subset subsequence
=> s \subset subsequence

Then, what is a common subsequence?

Well, you need something to make it common with

It's a subsequence that appears in multiple strings you are analyzing

Then, what is a common subsequence?

Well, you need something to make it common with

It's a subsequence that appears in multiple strings you are analyzing

Let's start easy with 2 strings

What is a Maximal Common Subsequence?

First, take two strings
Then, find a common subsequence

What is a Maximal Common Subsequence?

1. first, take two strings
2. then find a common subsequence

What is a Maximal Common Subsequence?

1. first, take two strings
2. then find a common subsequence

What is a Maximal Common Subsequence?

What is a Maximal Common Subsequence?

```
            1. first, take two strings
            2. then find a common subsequence
-> fian
This is a common subsequence; is it maximal?
```


What is a Maximal Common Subsequence?

```
            1. first, take two strings
```



```
2. then find a common subsequence
-> fian
This is a common subsequence; is it maximal? No: fiaon
```


Maximality

Subsequence W of X is maximal if it is not subsequence of other subsequences

Maximality

Subsequence W of X is maximal if it is not subsequence of other subsequences

$$
\text { fian } \subset \text { fiaon }
$$

Maximality is subtle

Is it adcc maximal?

Maximality is subtle

Is it adcc maximal?
no!

Maximality is subtle

Is it adcc maximal?
no!

Maximality is subtle

Is it adcc maximal?
no!

Maximality is subtle

Is it adec maximal?

no! abdcc

Maximality is weird

Is it e maximal?
eabdcacd
badbcdcce

Maximality is weird

Is it e maximal?
Yes!!

Our problem

Find all MCS between two strings X and Y

Trivial algorithm for finding all MCSs

1. Find all common subsequences
2. Filter out non-maximal ones by applying the definition

Trivial algorithm for finding all MCSs

1. Find all common subsequences (quite a lot!)
2. Filter out non-maximal ones (by checking if they are subseq. of other subseq.)

Trivial algorithm for finding all MCSs

1. Find all common subsequences (quite a lot! Is it feasible?)
2. Filter out non-maximal ones (by checking if they are subseq. of other subseq.) Can we do better?

Sanity check

Questions? You still with me?

Longest Common Subsequences

Let's take a detour

Easy definition:

the set of common subsequences whose length is maximum

The LCS problem consists in finding the length of an LCS

Use cases

DNA sequence alignment

Use cases

diff

1 Well, Longest Common Subsequences are useful!
2 For example the "diff" Unix utility uses it
3 It basically takes the LCS of lines in a file

8 They are classified as different!
9 even for a single character

1 So basically in this example, line 1 and 2 of
2 left pane correspond to line 3 and 4 of this
3 right pane; this is one embedding of the LCS
4 Well, Longest Common Subsequences are useful!

6 Now line 6 of the right pane corresponds to li
7 Whereas if the two lines are different
8 even for a single character...
9 They are classified as different!

Use cases

DNA sequence alignment
diff
Spelling error correction

Plagiarism detection

$L C S \subseteq M C S$

If a common subsequence is longest

then it is maximal

$L C S \subseteq M C S$

If a common subsequence is longest

 then it is maximalcan you see why?

$L C S \subseteq M C S$

If a common subsequence is longest

 then it is maximalLet $W \in \operatorname{LCS}(X, Y)$, suppose by contradiction W is not maximal
Then there exists some $c \in \Sigma$ and some $i \in[|W|]: \quad W^{\prime}=W[0, i) \cdot c \cdot W[i,|W|)$ is still a subsequence of X and Y

But $\left|W^{\prime}\right|=|W|+1$
A contradiction, as we supposed $W \in \operatorname{LCS}(X, Y)$

$L C S \leq M C S$

The LCS problem reduces to the MCS problem

If we find all MCS we can list all LCS (keep the ones with maximum length)

$L C S \leq M C S$

The LCS problem reduces to the MCS problem

If we find all MCS we can list all LCS (keep the ones with maximum length)
... and of course know the maximal length

How do we compute one LCS for two strings?

Classical dynamic programming approach

$$
\mathrm{O}(\mathrm{mn}) \quad \text { where } \mathrm{m}=|\mathrm{X}|, \mathrm{n}=|\mathrm{Y}|
$$

How do we compute one LCS for two strings?

Classical dynamic programming approach

$$
\mathrm{O}(\mathrm{mn}) \quad \text { where } \mathrm{m}=|\mathrm{X}|, \mathrm{n}=|\mathrm{Y}|
$$

How do we compute one LCS for two strings?

Classical dynamic programming approach

$$
\mathrm{O}(\mathrm{mn}) \quad \text { where } \mathrm{m}=|\mathrm{X}|, \mathrm{n}=|\mathrm{Y}|
$$

How many LCS are there?

```
let \(t=|X|+|Y|\)
let \(0<|\Sigma| \leq t\)
let \(D(t)=\max _{X, Y}|L C S(X, Y)|\)
```

$D(t)>1.2^{t}$
$D(t)<1.32^{t}$
(if $\mathrm{t} \bmod 6=0$)

Exponential even for two strings X and $Y!!$

How many LCS embeddings are there?

```
let \(t=|X|+|Y|\)
let \(0<|\Sigma| \leq t\)
let \(D(t)=\max _{X, Y}|L C S(X, Y)|\)
\(D(t)>1.2^{t}\)
\(D(t)<1.32^{t}\)
(if \(t \bmod 6=0\) )
```

The number of embeddings is even greater!

Since $L C S \subseteq M C S$

Also the number of distinct MCS is exponential even for two strings!!

Complexity

LCS problem

Given a set of strings S, print the length of a LCS of S

For k strings
The LCS problem is NP-Hard
[Maier 1978]

For 2 strings

The LCS problem has a conditional lower bound of $O\left(n^{2}\right) \quad$ [Abboud et al. 2015]

Complexity

LCS problem

Given a set of strings S, print the length of a LCS of S

For 2 strings

The LCS problem has a conditional lower bound of $O\left(n^{2}\right) \quad$ [Abboud et al. 2015]
-> based on the Strong Exponential Time Hypothesis (SETH).
-> it states that $\lim _{k \rightarrow \infty} s_{k}=1$, where $s_{k}=\inf \left\{\delta \mid k\right.$-SAT can be solved in $O\left(2^{\delta n}\right)$ time $\}$.

Enough theory

Let's play with some example

Back to our plan

Too many!

1. Find allcommon-subsequenees (quite a lot! Is it feasible?)
2. Filter out non-maximal ones (bychecking if they are-subseq. of other subseq.)

We cannot do it without knowing the other subsequences

How do we check maximality?

If we don't have other subsequences?

How do we check maximality?

The curtain algorithm

How do we check maximality?

The curtain algorithm

Sorry, low budget

The curtain algorithm

Take any input embedding

The curtain algorithm

Take any input embedding
Make it leftmost*

The curtain algorithm

Take any input embedding
Make it leftmost*
*the embedding of \mathbf{W} is leftmost if its last match is $\left(g_{W}, h_{W}\right)$ where $X\left[0, g_{W}\right)$ and $Y\left[0, h_{W}\right)$ are the shortest prefixes of X and Y that contain W

The curtain algorithm

Take any input embedding
Make it leftmost*
*the embedding of \mathbf{W} is leftmost if its last match is $\left(g_{W}, h_{W}\right)$ where $X\left[0, g_{W}\right)$ and $Y\left[0, h_{W}\right)$ are the shortest prefixes of X and Y that contain W
-> the definition of rightmost is analogous and uses the shortest suffixes

The curtain algorithm

Take any input embedding
Make it leftmost

Make it rightmost
one piece at a time
and check for insertions
(the substrings in between should be non-overlapping)

The curtain algorithm

Is it adcc maximal?
Take any input embedding

The curtain algorithm

Is it adcc maximal?
Take any input embedding
Make it leftmost

The curtain algorithm

Is it adcc maximal?
Take any input embedding
Make it leftmost

Make it rightmost
abdcacd

bad.bcdcc
one piece at a time
and check for insertions

The curtain algorithm

Is it adcc maximal?
Take any input embedding
Make it leftmost

Make it rightmost
one piece at a time
and check for insertions

The curtain algorithm

Is it adcc maximal?
Take any input embedding
Make it leftmost

Make it rightmost
one piece at a time
and check for insertions

The curtain algorithm

Is it adcc maximal?
Take any input embedding
Make it leftmost

Make it rightmost
one piece at a time
and check for insertions

The curtain algorithm

Take any input embedding
Make it leftmost

Make it rightmost
one piece at a time

https://doi.org/10.1007/s00453-021-00898-5
and check for insertions

$$
W \in M C S(X, Y) \Leftrightarrow \forall k \in[|W|], X_{k} \cap Y_{k}=\emptyset
$$

(the substrings in between should be non-overlapping);

The curtain algorithm - why does it work?

$$
W \in M C S(X, Y) \Leftrightarrow \forall k \in[|W|], X_{k} \cap Y_{k}=\emptyset
$$

(=>) contrapositive

Suppose $\exists k^{*} \in[|W|]$,

$$
c \in \Sigma: c \in X_{k^{*}} \cap Y_{k^{*}}
$$

https://doi.org/10.1007/s00453-021-00898-5

The curtain algorithm - why does it work?

$$
W \in M C S(X, Y) \Leftrightarrow \forall k \in[|W|], X_{k} \cap Y_{k}=\emptyset
$$

(=>) contrapositive

Suppose $\exists k^{*} \in[|W|]$,

$$
c \in \Sigma: c \in X_{k^{*}} \cap Y_{k^{*}}
$$

then $W\left[0, k^{*}\right) \cdot c \cdot W\left[k^{*},|W|\right)$
is common subsequence

https://doi.org/10.1007/s00453-021-00898-5

The curtain algorithm - why does it work?

$$
W \in M C S(X, Y) \Leftrightarrow \forall k \in[|W|], X_{k} \cap Y_{k}=\emptyset
$$

(=>) contrapositive

Suppose $\exists k^{*} \in[|W|]$,

$$
c \in \Sigma: c \in X_{k^{*}} \cap Y_{k^{*}}
$$

then $W\left[0, k^{*}\right) \cdot c \cdot W\left[k^{*},|W|\right)$

https://doi.org/10.1007/s00453-021-00898-5

$$
\begin{aligned}
& \text { But } \quad W \subset W\left[0, k^{*}\right) \cdot c \cdot W\left[k^{*},|W|\right) \\
& =>W \notin M C S(X, Y)
\end{aligned}
$$

How can we generate all distinct MCS?

How can we generate even one MCS?

How can we generate all distinct MCS?

How can we generate even one MCS?
-> There's an algorithm for this [Sakai 2018]
-> Not easily extendable to our problem
-> $O(n \sqrt{\log n / \log \log n})$
$->(n=\max (|X|,|Y|))$

Can you find one MCS?

What's the simplest way?

> a.bcacd
badcda

Can you find one MCS?

Let's try a greedy approach

abcacd

badcda

Can you find one MCS?

Let's try a greedy approach
Read the top string
left-to-right
find matches

Can you find one MCS?

Let's try a greedy approach
Read the top string
left-to-right
find matches

Can you find one MCS?

Let's try a greedy approach
Read the top string
left-to-right
find matches

Can you find one MCS?

Let's try a greedy approach
Read the top string
left-to-right
find matches

Can you find one MCS?

Let's try a greedy approach
Read the top string
left-to-right
find matches

Can you find one MCS?

Let's try a greedy approach
Read the top string
left-to-right
find matches

Is this maximal?

Can you find one MCS?

Let's try a greedy approach
Read the top string
left-to-right
find matches

Is this maximal?

We can check!

Checking maximality

Take any input embedding

Checking maximality

Take any input embedding
Make it leftmost

Checking maximality

Take any input embedding
Make it leftmost
Done by construction

Checking maximality

Take any input embedding
Make it leftmost
Done by construction

Make it rightmost

badcda

Checking maximality

Take any input embedding
Make it leftmost
Done by construction

Make it rightmost

badcda

Checking maximality

Take any input embedding
Make it leftmost
Done by construction

Make it rightmost

badcda
one piece at a time and check for insertions
It's also rightmost! -> No possible insertions -> It is maximal!

"aca" is Maximal

Good job everyone!

MCS problem has a greedy solution

Seminar's over

Open the chips

Not so fast

Read the top string

$$
\sqrt[\Omega]{\text { dcacab }}
$$

left-to-right
find matches
bdacda

Not so fast

Read the top string
left-to-right
find matches

Not so fast

Read the top string
left-to-right
find matches

Not so fast

Read the top string
left-to-right
find matches

Not so fast

Read the top string
left-to-right
find matches

Is this maximal?

Not so fast

Is this maximal?
Not really! daca

Not so fast

Is this maximal?
Not really! daca

What can we do?

Greedy doesn't work

Why?

What can we do?

Greedy doesn't work
Why?
When choosing this
we ignored this

Idea1: We shouldn't choose c if it one end can be shifted to insert another char Idea2: Maybe we should keep all possible embeddings found so far

Idea1

We shouldn't choose a match if it one end can be shifted to insert another char
$a b$ is the prefix of
abdc
which is an MCS

abadcbc

Idea1

We shouldn't choose a match if it one end can be shifted to insert another char

One end of c can be shifted to insert d abadcbc

Idea1

We shouldn't choose a match if it one end can be shifted to insert another char

One end of c can be shifted to insert d

This is not enough to discard c !
abadcloc

abb.bcdc

teat

We shouldn't choose a match if it one end can be shifted to insert another char

One end of c can be shifted to insert d

This is not enough to discard c! abadcbc

a.b.b cdc

There's an MCS abcc that uses that match!

Idea2: keep all possible embeddings found so far

We can clearly see that
$Y \subset X$
x: babababab

Y: baabaab

Watch out for complexity!

We can clearly see that
$Y \subset X$
x: babababab

Hence
$\operatorname{MCS}(X, Y)=\{Y\}$
Y: baabaab

Watch out for complexity!

We can clearly see that

But we don't know it yet!

Watch out for complexity!

2 choices
surely the left one
is the better one

Watch out for complexity!

2 choices
which is the
better one?

Watch out for complexity!

What about here??

Watch out for complexity!

and here???

Watch out for complexity!

The number of embeddings is exponential

We cannot explore all
configurations in reasonable
 time

Other too complex ideas

Use the curtain algorithm:

Input: W common subseq.

$$
\begin{aligned}
& \forall k \in[|W|]: \\
& \qquad \begin{array}{l}
I_{k} \leftarrow X_{k} \cap Y_{k} \\
\forall c \in I_{k}: \\
\quad \\
\quad \text { recur on } W[0, k) \cdot c \cdot W[k,|W|)
\end{array} \\
& \text { if } \sum_{k}\left|I_{k}\right|=0 \Rightarrow W \in \operatorname{MCS}(X, Y)
\end{aligned}
$$

Other too complex ideas

Use the curtain algorithm:
Input: W common subseq.

shortest prefix	X_{k}	shortest suffix
Y shortest prefix	Y_{k}	shortest su
W \|containing,		$\begin{aligned} & \text { I containing } \\ & \begin{array}{l} W[k,\|W\|) \end{array} \end{aligned}$

$$
\begin{aligned}
& \forall k \in[|W|]: \\
& \left\lvert\, \begin{array}{l}
I_{k} \leftarrow X_{k} \cap Y_{k} \quad \text { bab.ba.b } \\
\forall c \in I_{k}: \quad \text { recur on } W[0, k) \cdot c \cdot W[k,|W|) \\
\text { if } \sum_{k}\left|I_{k}\right|=0 \Rightarrow W \in \operatorname{MCS}(X, Y)
\end{array}\right.
\end{aligned}
$$

ba.baba.b

Other too complex ideas

$$
\forall k \in[|W|]:
$$

$$
I_{k} \leftarrow X_{k} \cap Y_{k}
$$

$$
\forall c \in I_{k}:
$$

$$
\text { recur on } W[0, k) \cdot c \cdot W[k,|W|)
$$

$$
\text { if } \sum_{k}\left|I_{k}\right|=0 \Rightarrow W \in \operatorname{MCS}(X, Y)
$$

In this case we start with

$$
\mathrm{W}=\mathrm{a} \quad \text { and } \quad \mathrm{W}=\mathrm{b}
$$

We would analyze almost all common subseq.
just to output "babab", i.e. the only MCS

Promising ideas: Divide and Conquer?

$$
M C S(X, Y)=\{a b b a, a b a d, d b a\}
$$

x: abad.ba
Y: dabbad

Promising ideas: Divide and Conquer?

$M C S(X, Y)=\{a b b a, a b a d, d b a\}$

$$
X^{\prime}: \quad \text { aba | d.ba :X" }
$$

Y': dab | bad : $\mathrm{Y}^{\prime \prime}$

Promising ideas: Divide and Conquer?

$$
\begin{aligned}
& \operatorname{MCS}(X, Y)=\{a b b a, a b a d, d b a\} \\
& \operatorname{MCS}\left(X^{\prime}, Y^{\prime}\right)=\{a b\} \\
& \operatorname{MCS}\left(X^{\prime \prime}, Y^{\prime \prime}\right)=\{b a, d\}
\end{aligned}
$$

Promising ideas: Divide and Conquer?

$$
\begin{aligned}
& \operatorname{MCS}(X, Y)=\{a b b a, a b a d, d b a\} \\
& \operatorname{MCS}\left(X^{\prime}, Y^{\prime}\right)=\{a b\} \\
& \operatorname{MCS}\left(X^{\prime \prime}, Y^{\prime \prime}\right)=\{b a, d\} \\
& \operatorname{MCS}\left(X^{\prime}, Y^{\prime}\right) \times \operatorname{MCS}\left(X^{\prime \prime}, Y^{\prime \prime}\right)=\{a b b a, a b d\}
\end{aligned}
$$

Promising ideas: Divide and Conquer?

$$
\begin{aligned}
& \operatorname{MCS}(X, Y)=\{a b b a, a b a d, d b a\} \\
& \operatorname{MCS}\left(X^{\prime}, Y^{\prime}\right)=\{a b\} \\
& \mathrm{X}^{\prime}: \\
& \mathrm{Y}^{\prime}: \\
& \operatorname{MCS}\left(X^{\prime \prime}, Y^{\prime \prime}\right)=\{b a, d\}
\end{aligned}
$$

$$
\operatorname{MCS}\left(X^{\prime}, Y^{\prime}\right) \times \operatorname{MCS}\left(X^{\prime \prime}, Y^{\prime \prime}\right)=\{a b b a, a b d\} \quad:-(\quad a b d \subset a b a d
$$

But maybe we are getting closer

Better ideas for incremental construction

Let P be a prefix of an MCS

Better ideas for incremental construction

Let P be a prefix of an MCS
We want to extend it to $P^{\prime}=P c$, such that P^{\prime} is still a prefix of some MCS

Better ideas for incremental construction

Let P be a prefix of an MCS
We want to extend it to $P^{\prime}=P c$, such that P^{\prime} is still a prefix of some MCS

But how do we know P is a prefix of an MCS if we do not know the MCS?

Prefixes of MCS and MCS of prefixes

The prefix of an MCS is an MCS of a prefix of the two strings

Prefixes of MCS and MCS of prefixes

The prefix of an MCS is an MCS of a prefix of the two strings

$$
\begin{aligned}
& \text { ??????????? } \\
& \text { ??????????? }
\end{aligned}
$$

?

Prefixes of MCS and MCS of prefixes

The prefix of an MCS is an MCS of a prefix of the two strings
$\operatorname{MCS}(X, Y)=\{a b b a, a b a d, d b a\}$
abad.ba
dab.bad

Prefixes of MCS and MCS of prefixes

The prefix of an MCS is an MCS of a prefix of the two strings

$$
\operatorname{MCS}(X, Y)=\{a b b a, a b a d, d b a\} \quad \text { a.bad.ba }
$$

The prefix "ab"
dab.bad

Prefixes of MCS and MCS of prefixes

The prefix of an MCS is an MCS of a prefix of the two strings
$\operatorname{MCS}(X, Y)=\{a b b a, a b a d, d b a\}$
aba

The prefix "ab"
is an MCS of $X[0,3)$ and $Y[0,4)$
da.b.b|

Prefixes of MCS and MCS of prefixes

The prefix of an MCS is an MCS of a prefix of the two strings

Formally:

$$
\begin{gathered}
\forall s \in M C S(X, Y), p_{s} \in[|s|], \exists p_{X}, p_{Y} \in[n]: \\
s\left[0, p_{s}\right) \in M C S\left(X\left[0, p_{X}\right), Y\left[0, p_{Y}\right)\right)
\end{gathered}
$$

Prefixes of MCS and MCS of prefixes

The prefix of an MCS is an MCS of a prefix of the two strings

Formally:

$$
\begin{gathered}
\forall s \in M C S(X, Y), p_{s} \in[|s|], \exists p_{X}, p_{Y} \in[n]: \\
s\left[0, p_{s}\right) \in M C S\left(X\left[0, p_{X}\right), Y\left[0, p_{Y}\right)\right)
\end{gathered}
$$

The converse doesn't hold!

MCS of prefixes and prefixes of MCS

An MCS of a prefix of the two strings is not necessarily the prefix of an MCS

MCS of prefixes and prefixes of MCS

An MCS of a prefix of the two strings is not necessarily the prefix of an MCS

$$
\operatorname{MCS}(X[0,6), Y[0,2))=\{d a\} \quad \text { a.bad.ba }
$$

da

MCS of prefixes and prefixes of MCS

An MCS of a prefix of the two strings is not necessarily the prefix of an MCS

$$
\operatorname{MCS}(X[0,6), Y[0,2))=\{d a\} \quad \text { a.badba }
$$

The MCS "da"
is not a prefix of any MCS
da

$$
M C S(X, Y)=\{a b b a, a b a d, d b a\}
$$

Recap for incremental construction

- P prefix of $s \in \operatorname{MCS}(X, Y) \Rightarrow P \in M C S\left(X\left[0, p_{X}\right), Y\left[0, p_{Y}\right)\right)$
- $P \in \operatorname{MCS}\left(X\left[0, p_{X}\right), Y\left[0, p_{Y}\right)\right) \nRightarrow P$ prefix of $s \in \operatorname{MCS}(X, Y)$

But our goal is exactly finding MCS through prefixes!

We needed the second implication!

- $P \in \operatorname{MCS}\left(X\left[0, p_{X}\right), Y\left[0, p_{Y}\right)\right) \nRightarrow P$ prefix of $s \in \operatorname{MCS}(X, Y)$

We need something stronger

Let P be the prefix of an MCS

We need something stronger

Let P be the prefix of an MCS
(base case: empty string ε)

We need something stronger

Let P be the prefix of an MCS
(base case: empty string ε)
It can be proven that for some $c \in \Sigma$:
Pc is a valid prefix \Leftrightarrow

1. $\exists(i, j) \in E x t_{P}: X[i]=c \wedge Y[j]=c$
2. $P \in \operatorname{MCS}(X[0, i), Y[0, j))$

We need something stronger

Let P be the prefix of an MCS
(base case: empty string ε)
It can be proven that for some $c \in \Sigma$:
Pc is a valid prefix \Leftrightarrow

1. $\exists(i, j) \in E x t_{P}: X[i]=c \wedge Y[j]=c$
2. $P \in \operatorname{MCS}(X[0, i), Y[0, j))$

So if P is an MCS of a prefix AND the c is in Ext_{P}
$=>\mathrm{Pc}$ is the prefix of an MCS!

We need something stronger

Let P be the prefix of an MCS
(base case: empty string ε)
It can be proven that for some $c \in \Sigma$:
Pc is a valid prefix \Leftrightarrow

1. $\exists(i, j) \in E x t_{P}: X[i]=c \wedge Y[j]=c$
2. $P \in \operatorname{MCS}(X[0, i), Y[0, j))$

So if P is an MCS of a prefix AND the c is in Ext_{P}
=> Pc is the prefix of an MCS! => Pc is the MCS of a prefix!

We need something stronger

Let P be the prefix of an MCS
(base case: empty string ε)
It can be proven that for some $c \in \Sigma$:
Pc is a valid prefix \Leftrightarrow

1. $\exists(i, j) \in E x t_{P}: X[i]=c \wedge Y[j]=c$
2. $P \in \operatorname{MCS}(X[0, i), Y[0, j))$

So if P is an MCS of a prefix AND the c is in Ext_{P}
=> Pc is the prefix of an MCS! => Pc is the MCS of a prefix!
We can iterate!

An example
Let $P=a b$
abadba
dab.bad

An example

$$
\begin{aligned}
& \text { Let } P=a b \\
& \qquad \text { Ext }_{P}=\{(4,3),(2,4)\}
\end{aligned}
$$

012345
abadba

dab.bad
012345

An example

$$
\begin{aligned}
& \text { Let } P=a b \\
& \operatorname{Ext}_{P}=\{(4,3),(2,4)\} \\
& \text { 'a' }=\mathrm{X}[2]=\mathrm{Y}[4]
\end{aligned}
$$

An example

$$
\text { Let } P=a b
$$

$$
\operatorname{Ext}_{P}=\{(4,3),(2,4)\}
$$

$$
{ }^{\prime} a \prime=X[2]=Y[4]
$$

$$
P \in M C S(X[0,2), Y[0,4))!
$$

An example

$$
\begin{aligned}
& \text { Let } P=a b \\
& \operatorname{Ext}_{P}=\{(4,3),(2,4)\} \\
& \text { 'a' = X[2] = Y[4] } \\
& P \in \operatorname{MCS}(X[0,2), Y[0,4))!
\end{aligned}
$$

An example

$$
\begin{aligned}
& \text { Let } P=a b \\
& \operatorname{Ext}_{P}=\{(4,3),(2,4)\} \\
& \text { 'a' = X[2] = Y[4] } \\
& P \in \operatorname{MCS}(X[0,2), Y[0,4))!
\end{aligned}
$$

$\Rightarrow P \cdot a$ is prefix of an MCS
-> 'aba' is one MCS of the prefix identified by $(2,4)$!!

An example

$$
\begin{aligned}
& \text { Let } P=a b \\
& \operatorname{Ext}_{P}=\{(4,3),(2,4)\} \\
& \text { 'a' = X[2] = Y[4] } \\
& P \in \operatorname{MCS}(X[0,2), Y[0,4))!
\end{aligned}
$$

-> 'aba' is one MCS of the prefix identified by $(2,4)$!!
-> Keep going! Ext $\operatorname{Exba}=\ldots$

What's Ext?

What's Ext?

Don't worry about it

We would just need 40 more minutes

What's Ext?

Don't worry about it

Just know that it needs

$$
O\left(|\Sigma| n^{2} \log (n)\right)
$$

preprocessing time and
the whole algorithm takes

$O\left(|\Sigma| n^{3}\right)$ delay and $O\left(n^{2}\right)$ space

Going further

Open problems

Improving complexity
We have a conditional lower bound of $O\left(n^{2}\right)$ from LCS

Open problems

Improving complexity
We have a conditional lower bound of $O\left(n^{2}\right)$ from LCS
Testing applications
All applications of LCS can be adapted to MCS, with better (?) performances!

Open problems

Improving complexity
We have a conditional lower bound of $O\left(n^{2}\right)$ from LCS
Testing applications
All applications of LCS can be adapted to MCS, with better (?) performances!

Special cases

Redefining maximality to fit applications such as DNA sequence alignment

Open problems

Improving complexity
We have a conditional lower bound of $O\left(n^{2}\right)$ from LCS
Testing applications
All applications of LCS can be adapted to MCS, with better (?) performances!

Special cases

Redefining maximality to fit applications such as DNA sequence alignment Or anything that comes to mind!

Open problems

Improving complexity
We have a conditional lower bound of $O\left(n^{2}\right)$ from LCS
Testing applications
All applications of LCS can be adapted to MCS, with better (?) performances!

Special cases

Redefining maximality to fit applications such as DNA sequence alignment Or anything that comes to mind!

Generalizing to $k>2$ strings

Takeaways

MCS are quite slippery to solve deceivingly simple

Takeaways

MCS are quite slippery to solve deceivingly simple, but fun!

I only gave you ONE way to solve the problem
if you have some ideas we could have a chat

Takeaways

MCS are quite slippery to solve deceivingly simple, but fun!

I only gave you ONE way to solve the problem
if you have some ideas we could have a chat
Great opportunity for research!
Tons of paper on LCS, less than 10 on MCS!

Takeaways

MCS are quite slippery to solve deceivingly simple, but fun!

I only gave you ONE way to solve the problem
if you have some ideas we could have a chat
Great opportunity for research!
Tons of paper on LCS, less than 10 on MCS!
Great potential, not quite known

Thank you

